
Relativistic kinetic theory of a system of particles with variable rest mass

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 1425

(http://iopscience.iop.org/0305-4470/9/9/005)

Download details:

IP Address: 171.66.16.108

The article was downloaded on 02/06/2010 at 05:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/9/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 9, No. 9. 1976. Printed in Great Britain. @ 1976 
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Abstract. In this paper we have endeavoured to study, by the formulation of a relativistic 
kinetic theory, a system in which the particles have variable rest mass. Macroscopic 
quantities and their evolution equations have been directly linked to the action responsible 
for the variation of the rest mass of the particles. The dissipative character of this ‘force’ 
gives a slight modification to the Liouville theorem and the Boltzmann equation. Adetailed 
study of reversible processes has shown that the macroscopic quantities keep the same form 
as for the usual perfect fluid (no bulk viscosity appears) though they are not conserved and 
can give rise to shearing and vortices. This pattern could serve as a model for the study of 
certain dissipative processes where mass is lost. 

1. Introduction 

Until the present time, work done on relativistic kinetic theory has been used to study 
systems of particles with constant rest mass mo (besides collision processes where mo 
may vary). In this paper we propose a new hypothesis, the possibility of variation in the 
rest mass under the influence of an external field and see what kind of modifications are 
then made to the usual pattern of relativistic kinetic theory. 

Is it possible to justify this new hypothesis, and what kind of applications can we 
expect it to give? First of all, let us note that the variation of rest mass can only exist if the 
particle, considered here as a quasi-punctual object, is able to lose mass or internal 
energy i.e. is capable of internal modifications. Such phenomena may occur if the 
particles are macroscopic objects as is the case for the kinetic theory approach to 
cosmology. Fundamental particles seem, at first sight, to be excluded from this pattern. 
Nevertheless, de Broglie (1964) considers a variation of mo in the framework of the 
hidden thermodynamics of the particle, which will lead to a reinterpretation of quantum 
mechanics. On the other hand, some authors (Arzeliks 1968, 1971, Costa de 
Beauregard 1972, Cavalleri and Salgarelli 1969, Landsberg 1970, Mgller 1967) have 
used the variation of the rest mass of the volume element within the framework of 
relativistic mechanics and thermodynamics of continuous media. Between these two 
points of view, Fronteau (1973) defines a ‘fine’ entropy for the particle which varies with 
mo just as a ‘fine’ temperature. 

Our purpose is to consider a variation of the rest mass of the particle and then 
deduce the macroscopic properties of the system thanks to the formalism of relativistic 
kinetic theory. The variation of mo can be due either to a direct exchange of matter or to 
an exchange of radiation between the particle and its surroundings (for example, 
transition between two energy levels). On the whole the system will behave like an 
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open system unless inclusive supplementary conditions are added. This pattern can 
apply to any dissipative system (thermodynamics, stars with variable mass, steady-state 
cosmologies) provided that we know the action responsible for the variation of the rest 
mass of the particles. 

We will adopt here the description of relativistic kinetic theory proposed by Synge 
(1957) and further developed by many authors, among whom are Tauber and Weinberg 
(1961), Chernikov (1963, 1964a, b), Israel (1963, 1972), Marle (1969), Ehlers (1971) 
and Stewart (1971). 

After briefly returning in § 2 to the equation of motion for a particle with variable 
rest mass, we will present the pattern of kinetic theory in §§§ 3 , 4  and 5 and we will limit 
this to a study of reversible processes in 9 6. We will present a classical study of the 
particles without taking the quantum effects into account. 

Most of the authors previously mentioned have already developed the case of the 
quantum particle and irreversible processes. Israel in particular studied in detail 
different sorts of collisions (elastic, inelastic, fusion, fission). He calculated the stresses 
and the transport coefficients which appear when there are slight departures from 
equilibrium. We shall see here that, in equilibrium, rest mass variation does not 
produce viscosity nor supplementary flows and that the energy-momentum tensor will 
remain that of a perfect gas although shearing and vortices are possible. 

2. Equation of motion for a particle with variable rest mass 

The manifold V, of general relativity is provided with the hyperbolic metric gap of 
signature + - - - (Greek subscripts take values 0, 1, 2, 3 and Latin subscripts 1, 2, 3). 
The general equation of motion for a particle with variable rest mass mo and four- 
velocity U" (u"u, = 1) is given by (Henry and Barrabbs 1972, Mprller 1972): 

Dp"/ds = F' + f a ,  (2.1) 
or by the two relationships obtained from (2. I)?: 

moc(Du"/ds) = F' + h",fa 
dplds = f "U, (2.2) 

where p a  = m o w P  is the four-momentum, p = = moc and where 
haP = S", - uUuB is the projection operator of the subspace orthogonal to the four- 
velocity. In equations (2.1) and (2.2), F" represents the sum of all external forces which 
do not produce a variation of rest mass, and f" the sum of those which do produce it. 
We notice in equation (2.2) that P is necessarily orthogonal to U" and that 7 
possesses a component along the four-velocity which is different from zero. 

One can then consider the following special cases. 

2.1. Exchange of particles 

If an exchange of particles with rest mass p takes place, with four-velocity A" and with 
a rate of exchange N, then equation (2.4) can be written: 

(2.3) Dp"/ds = F' + cpNA". 

t D/ds indicates the covariant derivative with respect to s. 
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A "  is in fact the barycentric velocity of the N d r  particles which are exchanged 
during the proper time interval d7. For photons with frequency Y, one only has to 
replace PA" by (hv /c2 )k"  where k a  is an isotropic vector. From equation (2.2) we 
obtain: 

(2.4) 

2.2. Isotropic exchange 

Such an exchange must not produce variation of velocity if the external forces F' are 
null. This condition is satisfied if :  

which gives the equation of motion: 

Remark. One sometimes uses the following variation law of p 

dp/ds = -Ap 

where A = cte. In the case of isotropic exchanges we will have: 

7 = -Ap". 

2.3. Case where f"  =p,  " 

We can greatly simplify the initial equation by using the conformal transformation: 

ds2 + &s2 = (p/pO)' ds2 

where po = cte. In this metric, equation (1) becomes: 

[d(poii")/&]+~,poii"C" = p. 
It is the equation of motion of a particle whose rest mass is po = cte because 

pzia = ( p / ~ ~ ) ~ F " u ,  = 0. Thus when described in terms of the unphysical metrics &2, 

the particles have constant rest mass and the standard results of kinetic theory hold. 

3. Phase space 

3.1. Definition 

As it is free from the condition p = cte, the phase space Ps is an eight-dimensional fibre 
bundle with base V4. The fibre is the set of future-directed, time-like vectors p", and 
the structural group is the orthochronous Lorentz group. We shall note X" = (x", p")  
the coordinates of the generic point of Ps, (a  = 0,  1, . . . , 7 ) :  

(3.1) X" = (X" = x", x"'4 - - P " ) .  
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According to § 2 the point X moves in P8 along a trajectory, the tangent vector La 
which is: 

La = dXa/ds. (3.2) 
This is only true if the particles do not interact. The components of La according to 
equation (2.1) are: 

L" = (P"/P) 
L ~ + ~  = F" + p  - r;,(pBpy/p) ya. (3.3) 

The symbols Gy are the Christoffel symbols of V4. It is possible to take as volume 
element on P8: 

R R ? 7 A 7 T ,  (3.4) 
wh&e 77 and 7~ are the volume element forms on V4 and its tangent space respectively: 

q = (-g)1/2E,opv dXQPpU /4! = (-g)'/' dx0123 
(3.5) 

7~ = (-g)1'2eappu dpUBp"/4! = (-g) l l2 dP01Z3 

R = lg( dxolz3 A dpolz3. 

This gives: 

(3.6) 
According to the definition of La,  i f f  ( x ,  p) is a function defined on P8, let us note: 

PP af af L(f)  =- :+ Y".. 
P ax aP (3.7) 

3.2. Liouville theorem 
We are now going to show that the dissipative character of the equation of motion (2.1) 
leads to a non-conservation of the volume element of P8, whereas there was conserva- 
tion for particles with constant rest mass. 

Let us then take the Lie derivative of R along the vector field L. Thanks to the 
well known property of differential forms: 

f L R  = d(L. R)+L. do,  

where L .  fl denotes the interior product of R by L and d the exterior differentiation, 
there remains: 

fLR = dw, 

where we noted w = L . fl: 
-- - E  ,prU dxSp"A dpolz3 + YE,,+ dx0lz3A dpS'"). 

3! p 

The exterior differentiation of w gives: 

so the Liouville theorem is written: 

&a= R@(F +f")/ap"). 
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In many cases the derivative of F" is null. For electromagnetic forces, this is due to the 
antisymmetry of the electromagnetic field tensor; very often F" depends neither on p a  
nor on p .  There remains then: 

f'R = R ( a p / a p " ) .  (3.9) 

The volume element is thus no longer preserved, since generally f depends on p u .  By a 
similar calculation one obtains, since L . o = 0: 

(3.10) 

It is possible to calculate the expressions of equation (3.9) in the different special 

(i) Exchange of particles: 

f L W  = w(d(F" + f " ) l a p " ) .  

cases already considered. We will find: 

(ii) Isotropic exchange: 

(3.11) 

(3.12) 

Remark. When the mass variation is given by equation (2.7), we have for the respective 
exchanges: 

(3.13) 

fLR = -4A R. (3.14) 

4. The Boltzmann equation 

The history of the medium is shown in the phase space by a set of trajectories whose 
vertices correspond to collisions between particles (the disappearance of a particle is 
represented by the end of its trajectory). We shall suppose that the particles only 
interact by collisions, and we shall limit our study to binary collisions. Since the 
knowledge of each particle's state cannot be used directly to find the macroscopic 
properties of the system, a distribution function is introduced on the occupied states of 
P8. This will be done in a way similar to the case where the rest mass is constant, but will 
lead to a slightly different Boltzmann equation (for this section, see Marle 1969, Ehlers 
1971, Stewart 1971). 

4.1. Distribution function 

Given X to be an oriented hypersurface of P8 whose projection on V4 is a three- 
dimensional space-like surface, let us take ( A l , . .  . , A,) as a set of seven linearly 
independent vectors forming a basis for 2. 

For each hypersurface 2 of this kind, let us suppose that there exists a differential 
form 8 which, when integrated on 2, gives the numerical flux of the trajectories cutting 
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C (allowing for the orientation of 2): 

As 8(Al,  . . . , A7) # 0 and as the vectors (L,  A,,  . . . , A7) are linearly independent, one 
has 8 = fw, and then: 

(4.1) 

where w = L .  !2 and f is a function of (x", p a ) .  If there are no interactions between 
particles (no collisions), then 6 must be invariant along the trajectories, i.e.: 

E L 6  = 0. 

Taking into account equation (3. lo), this gives: 

where L ( f )  is given by equation (3.7). 
If we suppress f " in equation (4.2), we find once more the usual condition L(  f )  = 0 

for a system of non-colliding particles with constant rest mass, if a P / a p "  = 0. The 
function f is the distribution function, and is by construction a Lorentz invariant. 

If, instead of C we take the frontier aD of closed domain D of Ps constituted by two 
hypersurfaces Cl, C2 similar to C, and a tube containing the trajectories, one interprets: 

N(aD)=J fw, (4.3) 
aD 

as the average numerical count of collisions between C, and C2. Using Stokes' theorem, 
and taking the relation df A L . R = L (  f)sZ, equation (4.3) can be written: 

(4.4) 

where the integrals are taken in the domains of space-time z1 and of four-momentum w 
included in D. If the numerical count is null for all v (collisions which preserve the 
numbers of particles), then: 

1 ( L ( f ) +  f r = o .  
W ap" 

Where f " = 0 and a F / a p "  = 0 we have once again 
systems of particles with constant rest mass, when the 
null: 

(4.5) 

the well known relationship for 
numerical count of collisions is 

4.2. 

Our 

Collision hypothesis 

knowledge of the nature of the collisions will give us the evolution of f (x", p " ) ,  
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represented in this case by the Boltzmann equation: 

(4.6) 

where q f ] ,  the collision term, is not specified. 
In order to simplify, let us take the case of a system with only one sort of particle. If 

p a ,  q" (p'", 4'") are the incident (emergent) four-momenta of two colliding particles, 
then the conservation law: 

p a  +q" =p'" +q'", 

indicates that we may equally well be dealing with an elastic as an inelastic collision, 
when one admits that the rest mass may be variable. The collision is elastic if we also 
have: p = p' and q = q'. 

Where mo = cte, it was necessary to introduce at least two sorts of particles in order 
to be able to use the term 'inelastic collisions'. If we settle for this sort of collision, then 
the collision term is rewritten (see Israel 1963, 1972 for a detailed study of collision 
processes) : 

(4.7) 

where the integrals are taken on the four-momentum spaces of the particles q, p ' ,  q', and 
where AW,P3qj is linked to the probability of the reaction. We take the usual conditions 
of equation (4.7) to be valid: (i) the gas is not too dense, (ii) the four-momenta 
(velocity and rest mass) are uncorrelated, (iii) the collisions take place in small 
space-time volumes so as not to modify the curvature, (iv) microscopic reversibility 
occurs, i.e.: 

A,-.p<,# = (4.8) 

One can check that, since the numerical count is null during these collisions, the 
expression (4.7) of c[f] gives us equation (4.5). This is a straightforward result taking 
into account the hypothesis of microscopic reversibility. 

If one also admits fusion ( p a  + q" = p'")  and fission (p" = p'" +q'") one must add to 
the right-hand side of (4.7) (cf Made 1969, Stewart 1971, Israel 1963, 1972): 

The numerical count of the collisions will no longer be null and equation (4.5) will no 
longer be valid. The generalization for a multi-component system is straightforward, 
and will not be made here. 

5. Macroscopic quantities and their conservation laws 

Having a distribution function on the phase space Ps, one can build macroscopic 
quantities for the systein, and give the corresponding conservation laws. 
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5.1. Macroscopic quantities 

Let us build the following quantities: 

N " = l  W f P Q d P  

(5.3) 

etc .  . , (the integrals are taken over the whole four-momentum space w ) .  If the first of 
these quantities does not seem to have a physical interpretation we can recognize in N" 
and I"@ respectively, the numerical flux vector and the energy-momentum tensor. 
Indeed, N(Z)  appears in equation (4.1) as the flux of the four-vector N" : 

N(C)  = I uaN" ; 
because the volume element on C = z1 X w, is w and we have noted: 

1/2 CT, = ( - g )  E , B ~ ~  d~""/!!. 

Likewise, the total momentum contained in C is the flux of the tensor TB defined in 
equation (5.3). 

5.2. Conservation laws 

By means of the equations (4.3)-(4.7), and of the Stokes' theorem, we obtain the 
conservation law for the numerical flux-vector: 

N",, = C[f ]T .  I 
If the collisions conserve the number of particles then of] is given by equation (4.7) 
and: 

N";, = 0. (5.4) 
One obtains the value of Tp,p by applying the previous result to: 

G" = J g p a T / p  
W 

where g is a function of xQ and p Q .  As: 

( 5 . 5 )  

one obtains To,@ by writing g = u,paf where U, is a covariant vector field independent 
of p a  and such that U,;@ = 0 (see Ehlers 1971): 
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For elastic as well as inelastic collisions (p"  +qa = p'* +q'"),  the symmetry proper- 
ties of the collision term (4.7), give: 

(5.7) 

Even when there are no external forces (F" = 0), we will not have TB,@ = 0, which is 
normal as the system is open. Note than in equation (5.7) we have supposed that there 
was no exchange of rest mass with the surroundings during the collision process. This 
simplifying process is due to the restriction of two-body reactions and to the supposedly 
instantaneous reaction of the collisions. 

Even if FB preserves the usual form of a perfect gas, and even if F' = 0, the 
presence of f a  will a priori entail shearing and vortices. 

5.3. Entropy, entropy inequality 

The four-vector entropy Sa is defined as usual by: 

Sa = -k f(1nf- l)p".rrlp. (5.8) 
W 

If one applies equations (5.5) and (5.6) with g = -kf(ln f - l), we obtain: 

a(P +m IT. I f  ap" 

A classical calculation shows that the first integral is always greater than or equal to 
0, so we obtain for the entropy the inequality: 

(5.9) 

A process will be called reversible if equality occurs, and irreversible if there is strict 
inequality. Even where there are no external forces, we do not have Sa;" B 0, because 
the dissipative property of the rest mass variation leads to the existence of a supplemen- 
tary source of entropy. 

The reversible condition imposes the same condition on the distribution function as 
in the usual case, i.e.: 

which indicates that In f is a collisional invariant, i.e. 

f (XU, p " ) f  ( X P ,  qa) = f  (XU, P'")f (xa ,  

for collisions such that: p p  +qa =p'" +q'". 

(5.10) 

(5.11) 

6. Study of reversible processes 

We will study, henceforth, a monocomponent gas in which the particles have variable 
rest mass and only collide in such a way that: 

p" + qa = p'" + q'". (6.1) 
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As we have already seen, such collisions can be elastic as well as inelastic. If one 
considers the former alone, one must add to equation (6.1) the following conditions: 

p = P I ,  q = 4'. (6.2) 

6.1. Distribution function 

According to the relationship (5.11) which is valid for reversible processes, the 
distribution function must be: 

f(xa,  pa)  = a e', 

where a is a scalar function of xu, and 4 is preserved during the collisions. If the 
particles are only characterized by their momentum, then the condition (6.1) gives: 

* = -papa> 

where pa is a time-like, future-oriented four-vector such that f + O  if p + m .  It is 
interesting to write: 

where P + O  and U" verifies V U ,  = 1. The distribution function is then written: 

f(xa, pa) = Ce-Bu=J'a. (6.3) 

The five factors C, P, U, introduced in equation (6.3) can only depend on xa, and 
will be determined by the five equations of motion (5.4) and (5.7). 

Up to now we have only imposed the condition (6.1) i.e. the variation of rest mass is 
the result of both the action off and of the inelastic conditions. If we impose as well 
the condition (6.2) i.e. if the variation of rest mass is only due to 7, then the five 
previous factors can generally depend upon p, as long as one always hasf+ 0 for p + CO. 

One sees indeed that this is compatible with the reversibility condition (5.11). 
Nevertheless, if one wants to keep the usual values for P and U" (temperature, 
four-velocity of the fluid), C alone will depend on p .  We can then write: 

(6.4) f ( x a ,  p a )  = ~ ( p )  e-Bu~pp, 

where C(p) is a function of p and of course of x o .  We propose to finish by studying the 
case where the distribution function is given by equation (6.3). 

6.2. Macroscopic quantities 

The macroscopic quantities N", T"', Sa defined respectively by equations (5.2), (5.3) 
and (5.8) can be deduced from A given by equation (5.1). Indeed one can easily show 
that: 

W = -aA/apa 

T"' = a2A/(apaap,), 
and that the entropy can be written in terms of N" and IT"': 

Sa = -k(ln C- l ) W  + k&IT"'. (6.7) 
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To obtain A we can use the convenient coordinate system (p, x, 6,4) already used by 
Synge (1957): 

p o = p  CoshX 
p 1 = p s i n h x s i n 8 c o s 4  

p2 = p sinh x sin 6 sin 4 
p 3 = p  s inhx cos 6 

where 8 E [0, T ] ,  4 E [O, 2 ~ 1 ,  x E [0, +CO[, p E [0, +a[?. 

is: 
In this coordinate system, the volume element of the four-space W of the momenta 

T = p' sinh'x sin 8 dp  d x  d8  d4.  

The product pap" is expressed in the coordinate system { x " }  where u" = (6, 1 )  and 
one then finds for A : 

A = ( 4 c / P ) m L 3 ) ,  

where the properties of the modified Bessel functions K, (x )  and of their integrals 
l?,,,,(p) are developed in the appendix. Taking into account equations (6.5H6.7) and 
these properties, one gets: 

W = n u "  

TUP = (poc2+p)U"U" -pg"' 

S" = s u " ,  

where we have noted: 

(6.8) 

s = -kn(In C- 1)+K@pac2  

We see immediately that the different macroscopic quantities keep the same form as 
for the usual perfect fluid. The unitary four-vector U* represents again the four- 
velocity of the fluid. It is collinear with N" and s", the factors n and s being respectively 
the number of material points and the entropy per unit volume of the local rest frame. 
Furthermore, the decomposition of 7"' brings out the proper energy poc2  of unit 
volume of the local rest frame and the pressure p. 

As seen in equation (6.9), we have the same equation of state of the perfect fluid: 

i j  = n / @ .  (6.10) 

this allows us to interpret P as (kT)- '  where Tis the temperature measured in the local 
rest frame. The proper density of entropy can then be written: 

s = -kn In C+ k p ( p o c 2 + p ) .  (6.11) 

t I f p  E [ p l ,  p 2 ] ,  the following integrals of the Bessel functions must be modified. 
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If P has finite non-null values, one then has (cf appendix): 

n = p~ = 6rr2e/p4 

poc2+p = (30rr2C/@) = ( 5 n / P ) ,  (6.12) 

n = p~ = $pp0c2, (6.13) 

s = kn[5-In(np4/6rr2) ] .  (6.14) 

or again: 

which gives: 

Generally, whatever the value of P, a combination of equations (6.9)-(6.11) gives: 

(6.15) 

The equations (6.14) and (6.15) replace the Sakur-Tetrode equation which for a 
relativistic perfect fluid made up of particles with constant rest mass is (cf Marle 1969): 

6.3. Equations of motion 

Since the different macroscopic quantities are known, we can now express their 
conservation laws, equations (5.4) and (5.7): 

ri+nUa;, = O  

(poc2+F)Lp = (P +p + p , q y a p  

~ o c 2 + p o c 2 V ; a  = (P +$)U" - p V ; ,  
(6.16) 

where yap = Sap - VU, is the projection operator on the subspace orthogonal to 
U" and where we have noted for every vector V ( x ,  p )  

I+= f V " r  J, 
If P is finite and not equal to 0 these equations will give, according to equation 

(6.12): 

By combining the first and third of these three relationships, we find: 

d P -(In np4)  = --(P +$)U,. 
dS n 

(6.17) 

(6.18) 

This equation is the new law of adiabatic processes, which was for mo = cte (Synge 
1957): 
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In the case where the external forces F" are null and where the exchange of mass is 
isotropic with the law of equation (2.8), one gets, after a calculation identical to the one 
giving N" : 

p" -32~ACv"/p'. 

If one replaces this relationship in (6.18) one finds using the first part of equation 
(6.12) that : 

d 16A 
-(In np ) = -. 
ds 3 T  

(6.19) 

This gives a simple first integral for the adiabatic processes. 

processes: 
After integration, equation (5.9) gives the variation of the entropy for reversible 

J: +$U" ;" = k p ( P  +F")U" 

by combining (6.11), (6.16) and this last equation one checks that: 

' I n c .  poc2 = L + - n .  
P 

Let us introduce the rest mass f i  and the proper internal energy E per material point, 
i.e. let us break down poc2 according to: 

poc = nmc2 + ne. 

Let us introduce in the same way the entropy per material point: 

s = nq. 

One then obtains the law of radiation for internal energy: 

i = ( f i /  k p )  - p( 1 ) = &C '. 
In addition to the first two terms of the right-hand side of this equation whose 

significance is obvious, the last term represents the contribution of the variation of mass 
to the internal energy. 

7. Conclusion 

The modifications of the relativistic kinetic theory which are brought about by the 
variation of the rest mass of the particles are direct consequences of the dissipative 
nature of the phenomenon. Among others the volume element of the phase space is no 
longer preserved, and consequently the Boltzmann equation is slightly modified. The 
evolution of the system is that of an open system, and kinetic theory has helped us to 
express this evolution in terms of the action which modifies the rest mass of the particle 
itself in (5.7). Furthermore, we have been able to clarify the expression of the 
supplementary entropy source due to the variation of mass, and we have shown that the 
macroscopic quantities and their evolution laws are similar to those of the usual case. 
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Appendix. Integrals of the Bessel functions K,(x) 

For references confiected with this section, see Watson (1966) and Luke (1962). The 
properties of the modified Bessel functions Kn(x)  defined by: 

m 
X n  

1 . 3 . 5 . .  . ( 2 n - 1 )  
J exp(-x cosh x) sinh2"X dx  (A. 1) K n ( x ) =  

have already been used in different studies on the relativistic kinetic theory of a system 
of particles with constant rest mass. It will be noted that if we write K;(x)(dK,/dx), we 
obtain the following equations: 

Kn + 1 (x 1 - K n  - 1 ( x  ) = ( 2  n/  x 1 Kn ( x  ). 

Here, we need integrals defined by: 
m 

K m , n  = I, X m K n  dx 

or more exactly we have to find integrals of the type: 
CO 

K m , n ( P )  = r"Kn(Pf) dt. 
0 

If /3 is non-null and finite, we can easily see that: 

Em,,(@) = p-(m+l)Km,". 

64.3) 

( A . 4 )  

64.5) 
Furthermore, we know that for m f n > -1 ,  

K ~ , ~  = 2"- 'r[ t (m + n + i ) ] ~ [ $ ( ~  - n + 1)j (A .6)  
where T ( x )  is the Eulerian function of the second kind. Equation (A .6)  will then give a 
simple expression for Km,n ( p )  when P is non-null and finite. 

By using the definition (A .4) ,  one obtains properties similar to (A .2)  for KL,,(P) = 
d(Km,n ( P ) ) / ~ P  

In this paper, we use only the properties (AS) ,  (A .6)  and (A.7). With the shape 
chosen for the distribution function, i.e. f = C e-Bppp, we will only need values 
m = 1 , 2 , 3  and n = 1,2 ,3 .  As we have previously mentioned it will be necessary to use 
other integrals on the lines of the function C(p) ,  if C depends on p in the distribution 
function. 
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